Add like
Add dislike
Add to saved papers

Achieving stem cell imaging and osteogenic differentiation by using nitrogen doped graphene quantum dots.

Nitrogen doped graphene quantum dots (N-GQDs) were synthesized to explore and extend their potential applications in biomedical field. The hemocompatibility and cytotoxity of the obtained N-GQDs were primarily assessed at concentrations ranging from 10 to 100 μg/ml. From the results, it was found that the proliferation of rat Bone Mesenchymal Stem Cells (rBMSCs) was depressed to a certain extent after incubating with the high concentration (100 μg/ml) of N-GQDs. The nanoscale size and superior dispersibility endow N-GQDs with good cell permeability. Meanwhile, owing to their intrinsic photoluminescence characteristic, the N-GQDs can be used to label cells with high uniformity and light stability in absence of chemical dyes. More importantly, the up-regulated expression of alkaline phosphate (ALP), extracellular matrix, osteopontin (OPN) and osteocalcin (OCN) in rBMSCs cultured with N-GQDs, indicating N-GQDs have the abilities to promote rBMSCs osteogenic differentiation. This work would help give a new insight into the advantages of N-GQDs and pave the way for application of N-GQDs in regenerative medicine fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app