Add like
Add dislike
Add to saved papers

A Method Using Goldmann Stimulus Sizes I to V-Measured Sensitivities to Predict Lead Time Gained to Visual Field Defect Detection in Early Glaucoma.

Purpose: To predict the lead time (difference in time taken for a visual field [VF] defect to be detected) obtained when using stimulus sizes within or near the size of the critical area of spatial summation (Ac), and to test these predictions using sensitivity measurements from a cohort of glaucoma patients.

Methods: Thirty-seven patients with early open-angle glaucoma and 60 healthy observers underwent VF testing on the Humphrey Field Analyzer in full threshold mode using Goldmann stimulus sizes I to V (GI-V) across the 30-2 test grid. We used the sensitivities measured using GI to V in healthy patients to predict the lead time gained by using stimulus sizes within the size of Ac at all locations within the 30-2 grid. Then, we used sensitivities measured in the glaucoma patients to test this predictive model.

Results: Median lead time to VF defect detection when using stimulus sizes within Ac compared with stimulus sizes larger than Ac was 4.1 years across the 30-2 test grid (interquartile range, 3.1 and 5.1 years). Sensitivities of the glaucoma patients showed good agreement with the predictive model of lead time gained (77.5%-84.3% were within ±3 dB).

Conclusions: Our model predicted substantial lead time differences when using stimulus sizes within or near Ac. Such stimulus sizes could potentially detect VF defects, on average, 4 years earlier than current paradigms.

Translational Relevance: Stimulus sizes within or near Ac may be more suitable for early detection of glaucomatous VF defects. Larger stimulus sizes may be more suitable for later monitoring of established disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app