Add like
Add dislike
Add to saved papers

β-apo-10'-carotenoids support normal embryonic development during vitamin A deficiency.

Scientific Reports 2018 June 12
Vitamin A deficiency is still a public health concern affecting millions of pregnant women and children. Retinoic acid, the active form of vitamin A, is critical for proper mammalian embryonic development. Embryos can generate retinoic acid from maternal circulating β-carotene upon oxidation of retinaldehyde produced via the symmetric cleavage enzyme β-carotene 15,15'-oxygenase (BCO1). Another cleavage enzyme, β-carotene 9',10'-oxygenase (BCO2), asymmetrically cleaves β-carotene in adult tissues to prevent its mitochondrial toxicity, generating β-apo-10'-carotenal, which can be converted to retinoids (vitamin A and its metabolites) by BCO1. However, the role of BCO2 during mammalian embryogenesis is unknown. We found that mice lacking BCO2 on a vitamin A deficiency-susceptible genetic background (Rbp4-/- ) generated severely malformed vitamin A-deficient embryos. Maternal β-carotene supplementation impaired fertility and did not restore normal embryonic development in the Bco2-/- Rbp4-/- mice, despite the expression of BCO1. These data demonstrate that BCO2 prevents β-carotene toxicity during embryogenesis under severe vitamin A deficiency. In contrast, β-apo-10'-carotenal dose-dependently restored normal embryonic development in Bco2-/- Rbp4-/- but not Bco1-/- Bco2-/- Rbp4-/- mice, suggesting that β-apo-10'-carotenal facilitates embryogenesis as a substrate for BCO1-catalyzed retinoid formation. These findings provide a proof of principle for the important role of BCO2 in embryonic development and invite consideration of β-apo-10'-carotenal as a nutritional supplement to sustain normal embryonic development in vitamin A-deprived pregnant women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app