Add like
Add dislike
Add to saved papers

Multidrug-Resistant Acinetobacter baumannii Chloramphenicol Resistance Requires an Inner Membrane Permease.

Acinetobacter baumannii is a Gram-negative organism that is a cause of hospital-acquired multidrug-resistant (MDR) infections. A. baumannii has a unique cell surface compared to those of many other Gram-negative pathogens in that it can live without lipopolysaccharide (LPS) and it has a high content of cardiolipin in the outer membrane. Therefore, to better understand the cell envelope and mechanisms of MDR A. baumannii , we screened a transposon library for mutants with defective permeability barrier function, defined as a deficiency in the ability to exclude the phosphatase chromogenic substrate 5-bromo-4-chloro-3-indolylphosphate (XP). We identified multiple mutants with mutations in the ABUW_0982 gene, predicted to encode a permease broadly present in A. baumannii isolates with increased susceptibility to the ribosome-targeting antibiotic chloramphenicol (CHL). Moreover, compared to other known CHL resistance genes, such as chloramphenicol acyltransferase genes, we found that ABUW_0982 is the primary determinant of intrinsic CHL resistance in A. baumannii strain 5075 (Ab5075), an important isolate responsible for severe MDR infections in humans. Finally, studies measuring the efflux of chloramphenicol and expression of ABUW_0982 in CHL-susceptible Escherichia coli support the conclusion that ABUW_0982 encodes a single-component efflux protein with specificity for small, hydrophobic molecules, including CHL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

Managing Alcohol Withdrawal Syndrome.Annals of Emergency Medicine 2024 March 26

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app