Add like
Add dislike
Add to saved papers

Altered microRNA expression during Impaired Glucose Tolerance and High-fat Diet Feeding.

OBJECTIVE: MicroRNAs (miRNAs) play a critical role in metabolic regulation. Recently, we identified novel miRNAs in the whole blood of South African women of mixed ethnic ancestry. The aim of this study was to investigate whether five of these novel miRNAs are expressed in serum and whether their expression is altered during metabolic dysregulation.

METHODS: Expression levels of the five novel miRNAs (MYN08, MYNO22, MYN059, MYNO66 and MYNO95) were measured in the serum of women with Impaired Glucose Tolerance (IGT) and Normoglycemia (NGT) (n=24), and in the whole blood of vervet monkeys fed a high-fat or standard diet (n=16) using quantitative real-time PCR.

RESULTS: Only three of the selected novel miRNAs (MYNO8, MYNO22 and MYNO66) were expressed in serum. The expression of MYN08 and MYNO22 were associated with fasting glucose and insulin concentrations, decreased during IGT and able to predict IGT. The expression of these miRNAs were similarly decreased in vervet monkeys fed a high-fat diet. In silico analysis identified a total of 291 putative messenger RNA targets for MYNO8 and MYNO22, including genes involved in gluconeogenesis, carbohydrate metabolism, glucose homeostasis and lipid transport.

CONCLUSION: Two novel miRNAs, MYNO8 and MYNO22, are associated with metabolic dysregulation in South African women of mixed ethnic ancestry and with high-fat diet feeding in vervet monkeys. Furthermore, putative gene targets were enriched in biological processes involved in key aspects of glucose regulation, which strengthens the candidacy of these miRNAs as biomarkers for dysglycemia, and warranting further studies to assess their clinical applicability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app