Add like
Add dislike
Add to saved papers

Modulation of gastrointestinal barrier and nutrient transport function in farm animals by natural plant bioactive compounds - A comprehensive review.

The use of antibiotics in diets has been restricted in several countries as a precautionary measure to avoid development of antibiotic resistance among pathogenic microorganisms. This regulation promoted the exploration of natural plant bioactive compounds (PBCs) as feed additives to improve productivity, welfare and health of livestock and poultry. Along with several beneficial attributes of PBCs, including antimicrobial, antioxidant and various pharmacological effects, they also improve barrier function and nutrient transport in the gastrointestinal (GI) tract. This comprehensive review discusses the effects of different PBCs on the integrity, nutrient transport and permeability of GI epithelia and their mechanism of actions. Dietary PBCs influence the maintenance and enhancement of GI integrity via a number of mechanisms including altered signaling pathways and expression of several tight junction proteins (claudins, occludin, and zonula occludens proteins), altered expression of various cytokines, chemokines, complement components and their transcription factors, goblet cell abundance and mucin gene expression, and the modulation of the cellular immune system. They also affect nutrient transporter gene expression and active absorption of nutrients, minerals and ammonia. One intriguing perspective is to select an effective dose at which a specific PBC could improve GI barrier function and nutrient absorption. The effective doses and clear-cut molecular mechanisms for PBCs are yet to be elucidated to understand discrepant observations among different studies and to improve the targeted biotechnological and pharmaceutical uses of PBCs in farm animals. The latter will also enable a more successful use of such PBCs in humans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app