Add like
Add dislike
Add to saved papers

Unraveling the Water Impermeability Discrepancy in CVD-Grown Graphene.

Graphene has recently attracted particular interest as a flexible barrier film preventing permeation of gases and moistures. However, it has been proved to be exceptionally challenging to develop large-scale graphene films with little oxygen and moisture permeation suitable for industrial uses, mainly due to the presence of nanometer-sized defects of obscure origins. Here, the origins of water permeable routes on graphene-coated Cu foils are investigated by observing the micrometer-sized rusts in the underlying Cu substrates, and a site-selective passivation method of the nanometer-sized routes is devised. It is revealed that nanometer-sized holes or cracks are primarily concentrated on graphene wrinkles rather than on other structural imperfections, resulting in severe degradation of its water impermeability. They are found to be predominantly induced by the delamination of graphene bound to Cu as a release of thermal stress during the cooling stage after graphene growth, especially at the intersection of the Cu step edges and wrinkles owing to their higher adhesion energy. Furthermore, the investigated routes are site-selectively passivated by an electron-beam-induced amorphous carbon layer, thus a substantial improvement in water impermeability is achieved. This approach is likely to be extended for offering novel barrier properties in flexible films based on graphene and on other atomic crystals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app