Add like
Add dislike
Add to saved papers

Differentiating solid, non-macroscopic fat containing, enhancing renal masses using fast Fourier transform analysis of multiphase CT.

OBJECTIVE: To test the feasibility of two-dimensional fast Fourier transforms (FFT)-based imaging metrics in differentiating solid, non-macroscopic fat containing, enhancing renal masses using contrast-enhanced CT images. We quantify image-based intratumoral textural variations (indicator of tumor heterogeneity) using frequency-based (FFT) imaging metrics.

METHODS: In this Institutional Review Board approved, Health Insurance Portability and Accountability Act -compliant, retrospective case-control study, we evaluated 156 patients with predominantly solid, non-macroscopic fat containing, enhancing renal masses identified between June 2009 and June 2016. 110 cases (70%) were malignant RCC, including clear cell, papillary and chromophobe subtypes and, 46 cases (30%) were benign renal masses: oncocytoma and lipid-poor angiomyolipoma. Whole lesions were manually segmented using Synapse 3D (Fujifilm, CT) and co-registered from the multiphase CT acquisitions for each tumor. Pathological diagnosis of all tumors was obtained following surgical resection. Matlab function, FFT2 was used to perform the image to frequency transformation.

RESULTS: A Wilcoxon rank sum test showed that FFT-based metrics were significantly (p < 0.005) different between 1. benign vs malignant renal masses, 2. oncocytoma vs clear cell renal cell carcinoma and 3. oncocytoma vs lipid-poor angiomyolipoma. Receiver operator characteristics analysis revealed reasonable discrimination (area under the curve >0.7, p < 0.05) within these three groups of comparisons.

CONCLUSION: In combination with other metrics, FFT-metrics may improve patient management and potentially help differentiate other renal tumors. Advances in knowledge: We report for the first time that FFT-based metrics can differentiate between some solid, non-macroscopic fat containing, enhancing renal masses using their contrast-enhanced CT data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app