Add like
Add dislike
Add to saved papers

CD56 bright natural killer cells induce HBsAg reduction via cytolysis and cccDNA decay in long-term entecavir-treated patients switching to peginterferon alfa-2a.

HBV surface antigen (HBsAg) reduction is well observed in chronic hepatitis B (CHB) patients treated with pegylated interferon alpha-2a (PegIFNα). However, the mechanism of HBsAg suppression has not been fully elucidated. Twenty-seven of 55 entecavir-treated CHB e antigen positive patients were switched to PegIFNα treatment (Group A) whereas 28 patients continued entecavir treatment (Group B). The percentage or absolute number of CD56bright /CD56dim NK cells, expression of receptors and cytokines were evaluated by flow cytometry for 48 weeks and correlated with treatment efficacy. In vitro, purified NK cells were co-cultured with HepAD38 cells for measurement of HBsAg, apoptosis and covalently closed circular DNA (cccDNA). In association with a reduction of HBsAg, the percentage and absolute number of CD56bright NK cells was significantly elevated in patients in group A, especially in Virologic Responders (VRs, HBsAg decreased). Furthermore, the percentage of NKp30+ , NKp46+ , TRAIL+ , TNF-α+ and IFNγ+ CD56bright NK cells were significantly expanded in Group A, which were positively correlated with the decline of HBsAg at week 48. In vitro, peripheral NK cells from Group A induced a decline of HBsAg in comparison with NK cells from Group B which was significantly inhibited by anti-TRAIL, anti-TNF-α and anti-IFNγ antibodies. Furthermore, apoptosis of HepAD38 cells and levels of cccDNA, were significantly reduced by TRAIL+ and TNF-α+ /IFNγ+ NK cells from Group A, respectively. A functional restoration of CD56bright NK cells in entecavir-treated patients who were switched to PegIFNα contributes to HBsAg and cccDNA clearance through TRAIL-induced cytolysis and TNF-α/IFNγ-mediated noncytolytic pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app