Add like
Add dislike
Add to saved papers

RNA interference validation of detoxification genes involved in ivermectin tolerance in Drosophila melanogaster.

Previously, we observed increased transcription levels of specific cytochrome P450 monooxygenase (P450) and adenosine triphosphate binding cassette (ABC) transporter genes in human body lice, Pediculus humanus humanus, following exposure to ivermectin using the non-invasive induction assay, which resulted in tolerance. To confirm the roles of these genes in induction and tolerance, the robust genetic model insect Drosophila melanogaster was chosen. Orthologous genes corresponding to the body louse P450 (Cyp9f2, Cyp6g2 and Cyp9h1) and ABC transporter (Mrp1, GC1824 as an ABCB type and CG3327 as an ABCG type) genes were selected for in vivo bioassay. Following a brief treatment with a sublethal dose of ivermectin, the mortality response was significantly slower, indicating the presence of tolerance. Concurrently, the transcription levels of Cyp9f2 and Mrp1 at 3 h and those of Cyp6g2, Cyp9h1, Mrp1, CG1824 and CG3327 at 6 h post-treatment were upregulated, indicating gene induction. In behavioural bioassay using GAL4/UAS-RNA interference transgenic fly lines, increased susceptibility to ivermectin was observed following heat shock in the Cyp9f2 , Cyp6g2 , Cyp9h1 , Mrp1 or CG3327-knockdown flies. Considering that these five genes are orthologous to those which had the largest over-expression level following ivermectin-induced tolerance in the body louse, the current results suggest that they are also associated with ivermectin detoxification in D. melanogaster and that body lice and D. melanogaster are likely to share, in part, similar mechanisms of tolerance to ivermectin.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app