Add like
Add dislike
Add to saved papers

An attraction-repulsion transition of force on wedges induced by active particles.

Soft Matter 2018 June 28
Effective forces between two micro-wedges immersed in an active bath are investigated using Brownian dynamics simulations. Two anti-parallel and parallel wedge-like obstacles are considered respectively, and the effective forces between two wedges rely on the wedge-to-wedge distance, the apex angle of the wedge, as well as the particle density and aspect ratio. For two anti-parallel wedges, a transition from repulsion to attraction occurs by varying the apex angle, which is also sensitive to the particle density and aspect ratio. The optimal apex angle θr* (or θa*) and particle density ρ* are characterized by the saturated trapping of active particles inside a wedge. For two parallel wedges, the effective force also experiences a transition from repulsion to attraction as the wedge-to-wedge distance increases. These results originate from the collective trapping effect which is driven by the many-body dynamics of self-propelled particles in the confinement (near the boundary) of obstacles. Our results can provide insight into controlling the motion and assembly of microscopic objects through the suspension of active particles.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app