Add like
Add dislike
Add to saved papers

Observations of the Effects of Angiotensin II Receptor Blocker on Angiotensin II-Induced Morphological and Mechanical Changes in Renal Tubular Epithelial Cells Using Atomic Force Microscopy.

Objective: Angiotensin II (Ang II) plays a profibrotic role in the kidneys. Although many pathways of Ang II have been discovered, the morphological and mechanical aspects have not been well investigated. We observed the changes in tubular epithelial cells (TECs) after Ang II treatment with or without Ang II receptor blockers (ARBs) using atomic force microscopy (AFM).

Methods: TECs were stimulated with Ang II with or without telmisartan, PD123319, and blebbistatin. AFM was performed to measure the cellular stiffness, cell volume, and cell surface roughness. Epithelial to mesenchymal transition markers were determined via immunocytochemistry.

Results: After Ang II stimulation, cells transformed to a flattened and elongated mesenchymal morphology. Cell surface roughness and volume significantly increased in Ang II treated TECs. Ang II also induced an increase in phospho-myosin light chain and F-actin and a decrease in E-cadherin. Ang II coincubation with either telmisartan or blebbistatin attenuated these Ang II-induced changes.

Conclusion: We report, for the first time, the use of AFM in directly observing the changes in TECs after Ang II treatment with or without ARBs. Simultaneously, we successfully measured the selective effect of PD123319 or blebbistatin. AFM could be a noninvasive evaluating strategy for cellular processes in TECs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app