Add like
Add dislike
Add to saved papers

Protective effects of exogenous NaHS against sepsis-induced myocardial mitochondrial injury by enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis in mice.

This study aimed to examine whether exogenous NaHS can protect myocardial mitochondrial injury from sepsis by enhancing the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α)/ nuclear factor erythroid-2-related factor 2 (NRF2) pathway and mitochondrial biosynthesis in mice. Animals were divided into sham-operated, sepsis, sepsis + 25 μmol/L NaHS, sepsis + 50 μmol/L NaHS, sepsis + 100 μmol/L NaHS, and sepsis + 200 μmol/L NaHS groups. The myocardial damage was evaluated by hematoxylin and eosin staining for myocardial microstructure and serum cardiac troponin I (cTnI) detection. The myocardial mitochondrial damage was evaluated through transmission electron microscopic observation of mitochondrial microstructure and detection of the degree of myocardial mitochondrial swelling. The adenosine triphosphate (ATP) level was used to appraise the mitochondrial function. The mRNA expression levels of Nrf2, PGC-1α, and Tfam were analyzed to explore the molecular mechanism.

RESULTS: In the sepsis group, the structure of myocardial tissue and mitochondria were significantly damaged, the serum cTnI level increased ( P < 0.05), the ATP level reduced, the degree of myocardial mitochondrial swelling aggravated, and the mRNA expression levels of Nrf2, PGC-1α, and Tfam increased ( P < 0.05). After NaHS treatment, the structure of myocardial tissue and mitochondria improved, the cTnI level reduced, the ATP level increased, the degree of myocardial mitochondrial swelling alleviated, and the mRNA expression level of Nrf2, PGC-1α, and Tfam increased continuously in a dose-dependent manner ( P < 0.05).

CONCLUSIONS: Exogenous NaHS had a protective effect against myocardial mitochondrial injury in sepsis. The mechanism might lie in enhancing the PGC-1α/NRF2 pathway and mitochondrial biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app