Add like
Add dislike
Add to saved papers

Preparation of Pure Populations of Amyloid β-Protein Oligomers of Defined Size.

Protein and peptide oligomers are thought to play important roles in the pathogenesis of a number of neurodegenerative diseases. For this reason, considerable effort has been devoted to understanding the oligomerization process and to determining structure-activity relationships among the many types of oligomers that have been described. We discuss here a method for producing pure populations of amyloid β-protein (Aβ) of specific sizes using the most pathologic form of the peptide, Aβ42. This work was necessitated because Aβ oligomerization produces oligomers of many different sizes that are non-covalently associated, which means that dissociation or further assembly may occur. These characteristics preclude rigorous structure-activity determinations. In studies of Aβ40, we have used the method of photo-induced cross-linking of unmodified proteins (PICUP) to produce zero-length carbon-carbon bonds among the monomers comprising each oligomer, thus stabilizing the oligomers. We then isolated pure populations of oligomers by fractionating the oligomers by size using SDS-PAGE and then extracting each population from the stained gel bands. Although this procedure worked well with the shorter Aβ40 peptide, we found that a significant percentage of Aβ42 oligomers had not been stabilized. Here, we discuss a new method capable of yielding stable Aβ42 oligomers of sizes from dimer through dodecamer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app