JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Molecular Mechanisms Underlying the Cardiovascular Benefits of SGLT2i and GLP-1RA.

PURPOSE OF REVIEW: In addition to their effects on glycemic control, two specific classes of relatively new anti-diabetic drugs, namely the sodium glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like peptide-1 receptor agonists (GLP-1RA) have demonstrated reduced rates of major adverse cardiovascular events (MACE) in subjects with type 2 diabetes (T2D) at high risk for cardiovascular disease (CVD). This review summarizes recent experimental results that inform putative molecular mechanisms underlying these benefits.

RECENT FINDINGS: SGLT2i and GLP-1RA exert cardiovascular effects by targeting in both common and distinctive ways (A) several mediators of macro- and microvascular pathophysiology: namely (A1) inflammation and atherogenesis, (A2) oxidative stress-induced endothelial dysfunction, (A3) vascular smooth muscle cell reactive oxygen species (ROS) production and proliferation, and (A4) thrombosis. These agents also exhibit (B) hemodynamic effects through modulation of (B1) natriuresis/diuresis and (B2) the renin-angiotensin-aldosterone system. This review highlights that while GLP-1RA exert direct effects on vascular (endothelial and smooth muscle) cells, the effects of SGLT2i appear to include the activation of signaling pathways that prevent adverse vascular remodeling. Both SGLT2i and GLP-1RA confer hemodynamic effects that counter adverse cardiac remodeling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app