Add like
Add dislike
Add to saved papers

Effects of ferric chloride pretreatment and surfactants on the sugar production from sugarcane bagasse.

An efficient pretreatment with various concentrations of FeCl3 (0.005-0.2 mol/L) was developed to extract hemicellulose in sugarcane bagasse and enhance the enzymatic hydrolysis of cellulose in pretreated solids. It was found that 0.025 mol/L FeCl3 pretreated substrate yielded a high glucose yield of 80.1% during enzymatic hydrolysis. Then the characterization of raw material and pretreated solids was carried out to better understand how hemicellulose removal affected subsequent enzymatic hydrolysis. In addition, Tween 80 and Bovine Serum Albumin (BSA) were added to promote enzymatic hydrolysis of pretreated substrate. Together with that obtained from pretreatment, the highest glucose yield reached 97.7% with addition of Tween 80, meanwhile, a reduction of 50% loading of enzyme yielded the same level of glucose. However, the increased yields with additives decreased gradually as the hydrolysis time was extended. Furthermore, the enhancement mechanisms of Tween 80 and BSA were determined.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app