Add like
Add dislike
Add to saved papers

Acceleration of NLRP3 inflammasome by chronic cerebral hypoperfusion in Alzheimer's disease model mouse.

Cerebral neuroinflammation defines a novel pathway for progressing Alzheimer's disease (AD) pathology. We investigated immunohistological changes of neuroinflammation with nucleotide-binding domain and leucine-rich repeat (NLR)-protein 3 (NLRP3), activated caspase-1 and interleukin-1 beta (IL-1β) in a novel AD (APP23) mice with chronic cerebral hypoperfusion (CCH) model from 4 months (M) of age, moreover, examined protective effect of galantamine. CCH strongly enhanced NLRP3, activated caspase-1 and IL-1β expressions in hippocampus and thalamus at age 12 M of AD mice. CCH also exaggerated amyloid-beta (Aβ) 40 depositions in cerebral cortex. Furthermore, CCH exacerbated a marked dissociation of neurovascular unit (NVU). These pathological changes were ameliorated by galantamine treatment. The present study demonstrated that CCH strongly enhanced primary AD pathology including neuroinflammation, Aβ accumulations and NVU dissociation in AD mice, which was greatly protected by an allosterically potentiating ligand galantamine.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app