Add like
Add dislike
Add to saved papers

Bacterioplankton drawdown of coral mass-spawned organic matter.

ISME Journal 2018 June 9
Coral reef ecosystems are highly sensitive to microbial activities that result from dissolved organic matter (DOM) enrichment of their surrounding seawater. However, the response to particulate organic matter (POM) enrichment is less studied. In a microcosm experiment, we tested the response of bacterioplankton to a pulse of POM from the mass-spawning of Orbicella franksi coral off the Caribbean coast of Panama. Particulate organic carbon (POC), a proxy measurement for POM, increased by 40-fold in seawater samples collected during spawning; 68% degraded within 66 h. The elevation of multiple hydrolases presumably solubilized the spawn-derived POM into DOM. A carbon budget constructed for the 275 µM of degraded POC showed negligible change to the concentration of dissolved organic carbon (DOC), indicating that the DOM was readily utilized. Fourier transform ion cyclotron resonance mass spectrometry shows that the DOM pool became enriched with heteroatom-containing molecules, a trend that suggests microbial alteration of organic matter. Our sensitivity analysis demonstrates that bacterial carbon demand could have accounted for a large proportion of the POC degradation. Further, using bromodeoxyuridine immunocapture in combination with 454 pyrosequencing of the 16S ribosomal RNA gene, we surmise that actively growing bacterial groups were the primary degraders. We conclude that coral gametes are highly labile to bacteria and that such large capacity for bacterial degradation and alteration of organic matter has implications for coral reef health and coastal marine biogeochemistry.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app