Add like
Add dislike
Add to saved papers

CDK1 inhibition facilitates formation of syncytiotrophoblasts and expression of human Chorionic Gonadotropin.

Placenta 2018 June
AIMS: The human placental syncytiotrophoblast (STB) cells play essential roles in embryo implantation and nutrient exchange between the mother and the fetus. STBs are polyploid which are formed by fusion of diploid cytotrophoblast (CTB) cells. Abnormality in STBs formation can result in pregnancy-related disorders. While a number of genes have been associated with CTB fusion the initial events that trigger cell fusion are not well understood. Primary objective of this study was to enhance our understanding about the molecular mechanism of placental cell fusion.

METHODS: FACS and microscopic analysis was used to optimize Forskolin-induced fusion of BeWo cells (surrogate of CTBs) and subsequently, changes in the expression of different cell cycle regulator genes were analyzed through Western blotting and qPCR. Immunohistochemistry was performed on the first trimester placental tissue sections to validate the results in the context of placental tissue. Effect of Cyclin Dependent Kinase 1 (CDK1) inhibitor, RO3306, on BeWo cell fusion was studied by microscopy and FACS, and by monitoring the expression of human Chorionic Gonadotropin (hCG) by Western blotting and qPCR.

RESULTS: The data showed that the placental cell fusion was associated with down regulation of CDK1 and its associated cyclin B, and significant decrease in DNA replication. Moreover, inhibition of CDK1 by an exogenous inhibitor induced placental cell fusion and expression of hCG.

CONCLUSION: Here, we report that the placental cell fusion can be induced by inhibiting CDK1. This study has a high therapeutic significance to manage pregnancy related abnormalities.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app