Add like
Add dislike
Add to saved papers

Beating of grafted chains induced by active Brownian particles.

We study the interplay between active Brownian particles (ABPs) and a "hairy" surface in two-dimensional geometry. We find that the increase of propelling force leads to and enhances inhomogeneous accumulation of ABPs inside the brush region. Oscillation of chain bundles (beating like cilia) is found in company with the formation and disassembly of a dynamic cluster of ABPs at large propelling forces. Meanwhile chains are stretched and pushed down due to the effective shear force by ABPs. The decrease of the average brush thickness with propelling force reflects the growth of the beating amplitude of chain bundles. Furthermore, the beating phenomenon is investigated in a simple single-chain system. We find that the chain swings regularly with a major oscillatory period, which increases with chain length and decreases with the increase of propelling force. We build a theory to describe the phenomenon and the predictions on the relationship between the period and amplitude for various chain lengths, and propelling forces agree very well with simulation data.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app