Add like
Add dislike
Add to saved papers

Mesencephalic Astrocyte-Derived Neurotrophic Factor Prevents Traumatic Brain Injury in Rats by Inhibiting Inflammatory Activation and Protecting the Blood-Brain Barrier.

World Neurosurgery 2018 September
BACKGROUND: Our previous studies have shown that mesencephalic astrocyte-derived neurotrophic factor (MANF) provides a neuroprotective effect against ischemia/reperfusion injury and is also involved in inflammatory disease models. This study investigates the potential role and mechanism of MANF in acute brain damage after traumatic brain injury (TBI).

METHODS: The model of TBI was induced by Feeney free falling methods with male Sprague-Dawley rats. The expression of MANF, 24 hours after TBI, was detected by the immunohistochemistry, immunofluorescence, Western blot, and reverse transcription polymerase chain reaction techniques. After treatment with recombinant human MANF after TBI, assessment was conducted 24 hours later for brain water content, cerebral edema volume in magnetic resonance imaging, neurobehavioral testing, and Evans blue extravasation. Moreover, by the techniques of Western blot and reverse transcription polymerase chain reaction, the expression of inflammatory cytokines (interleukin 1β and tumor necrosis factor α) and P65 was also analyzed to explore the underlying protective mechanism of MANF.

RESULTS: At 24 hours after TBI, we found that endogenous MANF was widely expressed in the rat's brain tissues and different types of cells. Treatment with a high dose of recombinant human MANF (20 μg/20 μL) significantly increased the modified Garcia score, and reduced brain water content as well as cerebral edema volume on magnetic resonance imaging. Furthermore, MANF alleviated not only the permeability of the blood-brain barrier (BBB) but also the expressions of interleukin 1β and tumor necrosis factor α messenger RNA and protein. Besides, the activation of P65 was also inhibited.

CONCLUSIONS: These results suggest that MANF provides a neuroprotective effect against acute brain injury after TBI, via attenuating blood-brain barrier disruption and intracranial neuroinflammation; the inhibition of the NF-κB signaling pathway might be a potential mechanism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app