Add like
Add dislike
Add to saved papers

The control of alginate degradation to dynamically manipulate scaffold composition for in situ transfection application.

In this study, nanofibrous scaffolds were used for in situ transfection application. Polyethylenimine (PEI)/DNA complexes adsorbed to alginate nanofibers, so the more alginate fibers resulted in the higher transfection efficiency. However, alginate was not favorable for cell adhesion. Therefore, poly (ε‑caprolactone) (PCL) nanofibers were electrospun with alginate to improve biocompatibility. The in situ transfection results demonstrated that although the incorporated PCL fibers effectively improved cell morphology, the bioactivity and proliferation rates of surface cells were not significantly increased due to the high ratio of alginate fibers. However, the reduction of the alginate ratio may decrease transfection efficiency because the immobilization of nonviral vectors linearly depended on the density of alginate fibers. To maintain transfection efficiency and increase biocompatibility, the stability of alginate fibers were manipulated by adjusting the concentrations of calcium ions during crosslinking. These partially crosslinked alginate fibers were initially intact to allow nanoparticle adsorption for cell uptake, and then gradually degraded in days to create an appropriate environment for cell survival. This dynamic system successfully fulfilled the requirements of both gene delivery and biocompatibility. To our knowledge, this study may be the first one which dynamically regulates scaffold composition for substrate-mediated gene delivery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app