Add like
Add dislike
Add to saved papers

17β-estradiol potentiates TREK1 channel activity through G protein-coupled estrogen receptor.

TWIK-related potassium channel 1 (TREK1), a two-pore domain potassium channel, is modulated by various hormones and neurotransmitters by activation of membrane receptor - coupled second messengers. 17β-estradiol is a neuromodulator capable of regulating several cellular processes including the activity of ion channels, in a rapid and non-genomic manner. The G protein-coupled estrogen receptor (GPER) is known to facilitate rapid actions of 17β-estradiol, though its role in modulation of ion channels is not widely explored. Several studies have shown both TREK1 and 17β-estradiol to be neuromodulatory but the interaction between them is not known. In the present study, using single channel cell-attached patch clamp electrophysiology in HEK293 cells, we show that 17β-estradiol increases the activity of hTREK1 channel by acting through hGPER and increasing the channel opening probability within minutes. The potentiation induced by 17β-estradiol is pertussis toxin - sensitive involving action of Gβγ subunits while the inhibitory effect of cAMP-PKA pathway on TREK1 is reduced. Protein phosphatases were also found to be important for the action of 17β-estradiol, which in concert with reduced activity of PKA, may alter the phosphorylation state of the channel and thus increase channel activity. Mutational studies revealed the serines at positions 315 and 348 in the C-terminal domain of hTREK1 to be the target sites for dephosphorylation induced by 17β-estradiol action through hGPER. Elucidation of the pathway for the potentiating action of 17β-estradiol via hGPER on hTREK1 channel activity will help us understand better one of the many possible neuroprotective mechanisms of 17β-estradiol and hTREK1 channel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app