Add like
Add dislike
Add to saved papers

Enhancement of photoluminescence and hole mobility in 1- to 5-layer InSe due to the top valence-band inversion: strain effect.

Nanoscale 2018 June 22
Recently, two-dimensional (2D) few-layer InSe nanosheets have become one of the most interesting materials due to their excellent electron transport, wide bandgap tunability and good metal contact. However, their low photoluminescence (PL) efficiency and hole mobility seriously restrict their application in 2D InSe-based nano-devices. Here, by exerting a suitable compressive strain, a remarkable modification for the electronic structure and the optical and transport properties of 1- to 5-layer InSe has been confirmed by powerful GW-BSE calculations. Both top valence band inversion and indirect-to-direct bandgap transition are induced; the light polarization is reversed from E||c to E⊥c; and the PL intensity and hole mobility are enhanced greatly. Surprisingly, under 6% compressive strain, the light emission of monolayer InSe with E⊥c is allowed at 2.58 eV, which has never been observed previously. Meanwhile, for the 2D few-layer InSe, the PL with E⊥c polarization increases over 10 times in intensity and has a blue-shift at about 0.6-0.7 eV, and the hole mobility increases two orders of magnitude up to 103 cm2 V-1 s-1, as high as electron mobility. The strained few-layer InSe are thus a promising candidate for future 2D electronic and optoelectronic nano-devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app