Add like
Add dislike
Add to saved papers

Improved Cell Transfection of siRNA by pH-Responsive Nanomicelles Self-Assembled with mPEG- b-PHis- b-PEI Copolymers.

Here, the novel pH-responsive nanomicelles self-assembled with amphipathic meo-poly(ethylene glycol)- b-poly(l-histidine)- b-polyethylenimine (mPEG- b-PHis- b-PEI, EHE) copolymers based on hydrophobic interaction of PHis with deprotonation of imidazoles were developed for siRNA transfection. The cationic nanomicelles could electrostatically compact siRNA into stable EHE/siRNA nanoplexes with a hydrodynamic diameter of ∼190 nm and present a low toxicity in normal physiological condition (pH ∼ 7.4). Different from pH-irresponsive ECE/siRNA nanoplexes based on mPEG- b-poly(ε-caprolactone)- b-PEI (ECE), the EHE/siRNA nanoplexes exhibited a higher cellular uptake along with an increased ζ-potential (from +18 to +32 mV) when the pH changed from 7.4 to 6.8 (extracellular acidic microenvironments). After cell internalization, the EHE/siRNA nanoplexes also exhibited an enhanced nanostructural disassembling and release of siRNA from lysosomal acidic microenvironments (pH ∼ 5.5). Furthermore, it was demonstrated that the EHE/siEGFR nanoplexes downregulated the expression levels of the corresponding mRNA and protein more efficiently than ECE/siEGFR in HeLa cells. The improved siRNA silencing effects of EHE/siEGFR nanoplexes resulted from the higher cellular uptake and enhanced endosomal/lysosomal escape, which is associated with the pH-responsive disassembly of nanostructure as well as the synergistic "proton sponge" effects of PHis and PEI in EHE copolymers. Therefore, the pH-responsive EHE nanomicelles would be promising and potential carriers for cell transfection of siRNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app