Add like
Add dislike
Add to saved papers

Brain-derived neurotrophic factor-TrkB signaling in the medial prefrontal cortex plays a role in the anhedonia-like phenotype after spared nerve injury.

Although depressive symptoms including anhedonia (i.e., loss of pleasure) frequently accompany pain, little is known about the risk factors contributing to individual differences in pain-induced anhedonia. In this study, we examined if signaling of brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin-receptor-kinase B (TrkB) contribute to individual differences in the development of neuropathic pain-induced anhedonia. Rats were randomly subjected to spared nerved ligation (SNI) or sham surgery. The SNI rats were divided into two groups based on the results of a sucrose preference test. Rats with anhedonia-like phenotype displayed lower tissue levels of BDNF in the medial prefrontal cortex (mPFC) compared with rats without anhedonia-like phenotype and sham-operated rats. In contrast, tissue levels of BDNF in the nucleus accumbens (NAc) of rats with an anhedonia-like phenotype were higher compared with those of rats without anhedonia-like phenotype and sham-operated rats. Furthermore, tissue levels of BDNF in the hippocampus, L2-5 spinal cord, muscle, and liver from both rats with or without anhedonia-like phenotype were lower compared with those of sham-operated rats. A single injection of 7,8-dihydroxyflavone (10 mg/kg; TrkB agonist), but not ANA-12 (0.5 mg/kg; TrkB antagonist), ameliorated reduced sucrose preference and reduced BDNF-TrkB signaling in the mPFC in the rats with anhedonia-like phenotype. These findings suggest that reduced BDNF-TrkB signaling in the mPFC might contribute to neuropathic pain-induced anhedonia, and that TrkB agonists could be potential therapeutic drugs for pain-induced anhedonia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app