Add like
Add dislike
Add to saved papers

An autonomous tumor-targeted nanoprodrug for reactive oxygen species-activatable dual-cytochrome c/doxorubicin antitumor therapy.

Nanoscale 2018 June 22
The precise tumor cell-specific delivery of therapeutic proteins and the elimination of side effects associated with routine chemotherapeutic agents are two current critical considerations for tumor therapy. In this study, we report a reactive oxygen species (ROS)-activated yolk-shell nanoplatform for the tumor-specific co-delivery of cytochrome c (Cyt c) prodrug and doxorubicin, in which the bioactivity of Cyt c could be restored by the intracellular ROS-trigger and readily initiate the sequential doxorubicin release. The DOX-loaded lactobionic acid-modified yolk-shell mesoporous silica nanoparticles were first encapsulated with 4-nitrophenyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl carbonate (NBC)-modified Cyt c via boronic ester linkages, and functionalized again with lactobionic acid to further shield Cyt c and confer the selective tumor targeting against liver cancer cells. The key feature in this design is that by taking advantage of the boronic ester linkage, the cytotoxicity of Cyt c capped on the nanoparticle could be temporarily deactivated during blood transportation and rapidly restored upon exposure to the ROS-rich microenvironment within liver cancer cells, thereby simultaneously achieving the protein therapy and stimuli-responsive doxorubicin release. This study presents a novel strategy for the development of tumor-sensitive co-delivery nanoplatforms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app