Add like
Add dislike
Add to saved papers

Deglycosylation of Shaker K V channels affects voltage sensing and the open-closed transition.

Most membrane proteins are subject to posttranslational glycosylation, which influences protein function, folding, solubility, stability, and trafficking. This modification has been proposed to protect proteins from proteolysis and modify protein-protein interactions. Voltage-activated ion channels are heavily glycosylated, which can result in up to 30% of the mature molecular mass being contributed by glycans. Normally, the functional consequences of glycosylation are assessed by comparing the function of fully glycosylated proteins with those in which glycosylation sites have been mutated or by expressing proteins in model cells lacking glycosylation enzymes. Here, we study the functional consequences of deglycosylation by PNGase F within the same population of voltage-activated potassium (KV ) channels. We find that removal of sugar moieties has a small, but direct, influence on the voltage-sensing properties and final opening-closing transition of Shaker KV channels. Yet, we observe that the interactions of various ligands with different domains of the protein are not affected by deglycosylation. These results imply that the sugar mass attached to the voltage sensor neither represents a cargo for the dynamics of this domain nor imposes obstacles to the access of interacting molecules.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app