Add like
Add dislike
Add to saved papers

Urinary exosomal expression of activator of G protein signaling 3 in polycystic kidney disease.

BMC Research Notes 2018 June 8
OBJECTIVE: PKD is a genetic disease that is characterized by abnormally proliferative epithelial cells in the kidney and liver. Urinary exosomes have been previously examined as a source of unique proteins that may be used to diagnose and monitor the progression of PKD. Previous studies by our group have shown that AGS3, which is a receptor-independent regulator G-proteins, was markedly upregulated in RTECs during kidney injury including PKD. In this study, our goal was to determine whether AGS3 could be measured in exosomes using animals and humans with PKD.

RESULTS: In our study, urinary exosomes were isolated from PCK rats and the control Sprague-Dawley (SD) rats. AGS3 expression was significantly increased (P < 0.05) in PKD versus SD rats at 16 weeks of age. This increase was detectable in a time-dependent manner from 8 weeks of age and peaked at ~ 16-20 weeks (length of study). Similarly, in exosomes from human urine samples with PKD, AGS3 expression was significantly increased (P < 0.05) compared to healthy human controls where AGS3 was largely undetectable. In conclusion, the detection of AGS3 in urinary exosomes may be a novel biomarker for PKD, and provide new insight into the biology of tubular epithelial cell function during cystic disease progression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app