Add like
Add dislike
Add to saved papers

Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy.

BMC Neurology 2018 June 8
BACKGROUND: Worldwide, over 10 million individuals suffer from drug-resistant epilepsy. New therapeutic strategies are needed to address this debilitating disease. Inhibition of sodium-glucose linked transporters (SGLTs), which are variably expressed in the brain, has been demonstrated to reduce seizure activity in murine models of epilepsy. Here we investigated the effects of dapagliflozin, a highly competitive SGLT2 inhibitor currently used as a drug for diabetes mellitus, on seizure activity in rats with pentylenetetrazol (PTZ) induced seizures.

METHODS: Laboratory rats (n = 48) were evenly randomized into two experiments, each with four study arms: (1) a vehicle-treated (placebo) arm infused with saline; (2) a control arm infused with PTZ; (3) a treatment arm with PTZ and dapagliflozin at 75 mg/kg, and (4) another treatment arm with PTZ and dapagliflozin at 150 mg/kg. Study subjects were assessed for seizures either via EEG as measured by spike wave percentage (SWP), or clinically via Racine's scales scores (RSS) and time to first myoclonic jerk (TFMJ).

RESULTS: Rats treated with dapagliflozin had lower mean SWP on EEG (20.4% versus 75.3% for untreated rats). Behaviorally, treatment with dapagliflozin improved means RSS (2.33 versus 5.5) and mean TFMJ (68.3 versus 196.7 s). All of these findings were statistically significant with p-values of < 0.0001. There was a trend towards even better seizure control with the higher dose of dapagliflozin at 150 mg/kg, however this was not consistently statistically significant.

CONCLUSIONS: Dapagliflozin decreased seizure activity in rats with PTZ-induced seizures. This may be explained by the anti-seizure effects of decreased glucose availability and a reduction in sodium transport across neuronal membranes which can confer a stabilizing effect against excitability and unwanted depolarization. The potential clinical role of dapagliflozin and other SGLT2 inhibitors as anti-seizure medications should be further explored.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app