Add like
Add dislike
Add to saved papers

Critical Role of the Crystallite Size in Nanostructured Li 4 Ti 5 O 12 Anodes for Lithium-Ion Batteries.

Lithium titanate Li4 Ti5 O12 (LTO) is regarded as a promising alternative to carbon-based anodes in lithium-ion batteries. Despite its stable structural framework, LTO exhibits disadvantages, such as the sluggish lithium-ion diffusion and poor electronic conductivity. To modify the performance of LTO as an anode material, nanosizing constitutes a promising approach and the impact is studied here by a systematical experimental approach. Phase-pure polycrystalline LTO nanoparticles (NPs) with high crystallinity and crystallite sizes ranging from 4 to 12 nm are prepared by an optimized solvothermal protocol and characterized by several state-of-the-art technologies, including high-resolution transmission electron microscopy, X-ray diffraction (XRD), pair distribution function (PDF) analysis, Raman spectroscopy, and X-ray photoelectron spectroscopy. Through a wide array of electrochemical analyses, including charge/discharge profiles, cyclic voltammetry, and electrochemical impedance spectroscopy, a crystallite size of approx. 7 nm is identified as the optimum particle size. Such NPs exhibit as good reversible capacity as the ones with larger crystallite sizes but with a more pronounced interfacial charge storage. By decreasing the crystallite size to about 4 nm, the interfacial charge storage increases remarkably, however resulting in a loss of reversible capacity. An in-depth structural characterization using the PDF obtained from synchrotron XRD data indicates an enrichment in Ti for NPs with the small crystallite sizes, and this Ti-rich structure enables a higher Li storage. The electrochemical characterization confirms this result and furthermore points to a plausible reason as to why a higher Li storage in very small nanoparticles (4 nm) results in a loss in the reversible capacity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app