Add like
Add dislike
Add to saved papers

Experimental Spinal Cord Injury Causes Left-Ventricular Atrophy and Is Associated with an Upregulation of Proteolytic Pathways.

Journal of Neurotrauma 2018 August 14
Spinal cord injury (SCI) causes autonomic dysfunction, altered neurohumoral control, profound hemodynamic changes, and an increased risk of heart disease. In this prospective study, we investigated the cardiac consequences of chronic experimental SCI in rats by combining cutting edge in vivo techniques (magnetic resonance imaging [MRI] and left-ventricular [LV] pressure-volume catheterization) with histological and molecular assessments. Twelve weeks post-SCI, MRI-derived structural indices and in vivo LV catheterization-derived functional indices indicated the presence of LV atrophy (LV mass in Control vs. SCI = 525 ± 38.8 vs. 413 ± 28.6 mg, respectively; p = 0.0009), reduced ventricular volumes (left-ventricular end-diastolic volume in Control vs. SCI = 364 ± 44 vs. 221 ± 35 μL, respectively; p = 0.0004), and contractile dysfunction (end-systolic pressure-volume relationship in Control vs. SCI = 1.31 ± 0.31 vs. 0.76 ± 0.11 mm Hg/μL, respectively; p = 0.0045). Cardiac atrophy and contractile dysfunction in SCI were accompanied by significantly lower blood pressure, reduced circulatory norepinephrine, and increased angiotensin II. At the cellular level, we found the presence of reduced cardiomyocyte size and increased expression of angiotensin II type 1 receptors and transforming growth factor-beta receptors (TGF-β receptor 1 and 2) post-SCI. Importantly, we found more than a two-fold increase in muscle ring finger-1 and Beclin-1 protein level following SCI, indicating the upregulation of the ubiquitin-proteasome system and autophagy-lysosomal machinery. Our data provide novel evidence that SCI-induced cardiomyocyte atrophy and systolic cardiac dysfunction are accompanied by an upregulation of proteolytic pathways, the activation of which is likely due to loss of trophic support from the sympathetic nervous system, neuromechanical unloading, and altered neurohumoral pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app