Add like
Add dislike
Add to saved papers

Brain oscillations reveal impaired novelty detection from early stages of Parkinson's disease.

The identification of reliable biomarkers for early diagnosis and progression tracking of neurodegenerative diseases has become an important objective in clinical neuroscience in the last years. The P3a event-related potential, considered as the neurophysiological hallmark of novelty detection, has been shown to be reduced in Parkinson's disease (PD) and proposed as a sensitive measure for illness duration and severity. Our aim for this study was to explore for the first time whether impaired novelty detection could be observed through phase- and time-locked brain oscillatory activity at early PD. Twenty-seven patients with idiopathic PD at early stages (disease duration <5 years and Hoehn and Yahr stage <3) were included. A healthy control group (n = 24) was included as well. All participants performed an auditory involuntary attention task including frequent and deviant tones while a digital EEG was obtained. A neuropsychological battery was administered as well. Time-frequency representations of power and phase-locked oscillations and P3a amplitudes were compared between groups. We found a significant reduction of power and phase locking of slow oscillations (3-7 Hz) for deviant tones in the PD group compared to controls in the P3a time range (300-550 ms). Also, reduced modulation of late induced (not phase locked) alpha-beta oscillations (400-650 ms, 8-25 Hz) was observed in the PD group after deviant tones onset. The P3a amplitude was predicted by years of evolution in the PD group. Finally, while phase-locked slow oscillations were associated with task behavioral distraction effects, induced alpha-beta activity was related to cognitive flexibility performance. Our results show that novelty detection impairment can be identified in neurophysiological terms from very early stages of PD, and such impairment increases linearly as the disease progresses. Also, induced alpha-beta oscillations underlying novelty detection are related to executive functioning.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app