Add like
Add dislike
Add to saved papers

Altered brain high-energy phosphate metabolism in mild Alzheimer's disease: A 3-dimensional 31 P MR spectroscopic imaging study.

In Alzheimer's disease (AD), defects in essential metabolic processes for energy supply and phospholipid membrane function have been implicated in the pathological process. However, post-mortem investigations are generally limited to late stage disease and prone to tissue decay artifacts. In vivo assessments of high energy phosphates, tissue pH and phospholipid metabolites are possible by phosphorus MR spectroscopy (31 P-MRS), but so far only small studies, mostly focusing on single brain regions, have been performed. Therefore, we assessed phospholipid and energy metabolism in multiple brain regions of 31 early stage AD patients and 31 age- and gender-matched controls using 31 P-MRS imaging. An increase of phosphocreatine (PCr) was found in AD patients compared with controls in the retrosplenial cortex, and both hippocampi, but not in the anterior cingulate cortex. While PCr/inorganic phosphate and pH were also increased in AD, no changes were found for phospholipid metabolites. This study showed that PCr levels are specifically increased in regions that show early degeneration in AD. Together with an increased pH, this indicates an altered energy metabolism in mild AD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app