JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Import and Export of Misfolded α-Synuclein.

In Parkinson's disease, intracellular α-synuclein (α-syn) inclusions form in neurons and are referred to as Lewy bodies. These aggregates spread through the brain following a specific pattern leading to the hypothesis that neuron-to-neuron transfer is critical for the propagation of Lewy body pathology. Here we review recent studies employing pre-formed fibrils generated from recombinant α-syn to evaluate the uptake, trafficking, and release of α-syn fibrils. We outline methods of internalization as well as cell surface receptors that have been described in the literature as regulating α-syn fibril uptake. Pharmacological and genetic studies indicate endocytosis is the primary method of α-syn internalization. Once α-syn fibrils have crossed the plasma membrane they are typically trafficked through the endo-lysosomal system with autophagy acting as the dominant method of α-syn clearance. Interestingly, both chaperone-mediated autophagy and macroautophagy have been implicated in the degradation of α-syn, although it remains unclear which system is chiefly responsible for the removal of α-syn fibrils. The major hallmark of α-syn spreading is the templating of misfolded properties onto healthy protein resulting in a conformational change; we summarize the evidence indicating misfolded α-syn can seed endogenous α-syn to form new aggregates. Finally, recent studies demonstrate that cells release misfolded and aggregated α-syn and that these processes may involve different chaperones. Nonetheless, the exact mechanism for the release of fibrillar α-syn remains unclear. This review highlights what is known, and what requires further clarification, regarding each step of α-syn transmission.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app