Add like
Add dislike
Add to saved papers

Pharmacokinetic properties of a novel inosine analog, 4'-cyano-2'-deoxyinosine, after oral administration in rats.

4'-cyano-2'-deoxyinosine (SK14-061a), a novel nucleoside analog based on inosine, has antiviral activity against the human immunodeficiency virus type 1 that has the ability to acquire resistance against many types of reverse transcriptase inhibitors based on nucleosides. The aim of this study was to investigate the pharmacokinetics studies after its oral administration to rats. For this purpose, we first developed and validated an analytical method for quantitatively determining SK14-061a levels in biological samples by a UPLC system interfaced with a TOF-MS system. A rapid, simple and selective method for the quantification of SK14-061a in biological samples was established using liquid chromatography mass spectrometry (LC-MS) with solid phase extraction. The pharmacokinetic properties of SK14-061a in rats after oral administration were then evaluated using this LC-MS method. SK14-061a was found to be relatively highly bioavailable, is rapidly absorbed from the intestinal tract, and is then mainly distributed to the liver and then ultimately excreted via the urine in an unchanged form. Furthermore, the simultaneous administration of SK14-061a with the nucleoside analog, entecavir, led to a significant alteration in the pharmacokinetics of SK14-061a. These results suggest that the SK14-061a has favorable pharmacokinetic properties with a high bioavailability with the potential for use in oral pharmaceutical formulations, but drug-drug interactions should also be considered.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app