Add like
Add dislike
Add to saved papers

Zinc removal from model solution and wastewater by Arthrospira (Spirulina) Platensis biomass.

The biosorption of zinc from model solution as well as wastewater by Arthrospira (Spirulina) platensis biomass was studied. Adsorption capacity of the biosorbent was investigated as a function of contact time between adsorbent and zinc, the initial metals and sorbent concentration, pH value, and temperature. The ability of Arthrospira biomass for zinc biosorption exhibited a maximum at the pH range 4-8. Equilibrium data fitted well with the Langmuir model as well as the Freundlich model with maximum adsorption capacity of 7.1 mg/g. The pseudo second-order model was found to correlate well with the experimental data. Different thermodynamic parameters, ΔG°, ΔH° and ΔS° were evaluated and it has been found that the sorption was feasible, spontaneous, and endothermic in nature. The process of zinc removal from industrial effluent was studied at different time of sorbat-sorbent interaction and different sorbent dosage. Maximum zinc removal (83%) was obtained at sorbent concentration 60 g/L during 1-h experiment. The results indicate that Arthrospira platensis biomass could be effectively used for zinc removal from industrial effluents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app