Add like
Add dislike
Add to saved papers

Three-dimensional porous microspheres comprising hollow Fe 2 O 3 nanorods/CNT building blocks with superior electrochemical performance for lithium ion batteries.

Nanoscale 2018 June 15
It is highly desirable to develop anode materials with rational architectures for lithium ion batteries to achieve high-performance electrochemical properties. In this study, three-dimensional porous composite microspheres comprising hollow Fe2O3 nanorods/carbon nanotube (CNT) building blocks are successfully constructed by direct deposition and further thermal transformation of beta-FeOOH nanorods on CNT porous microspheres. The CNT porous microsphere, which is prepared by a spray pyrolysis, provides ample sites for the direct growth of beta-FeOOH nanorods. During the further oxidation process, the beta-FeOOH nanorods are transformed into hollow Fe2O3 nanorods as a result of dehydroxylation and lattice shrinkage, resulting in the formation of hollow Fe2O3 nanorods/CNT porous microspheres. Such a hierarchical structure of composite microspheres not only facilitates electrolyte accessibility but also offers conductive networks for electrons during electrochemical reactions. Accordingly, the electrodes exhibit a high discharge capacity of 1307 mA h g-1 after 300 cycles at a current density of 1 A g-1; this is associated with an excellent capacity retention of 84%, which is calculated from the initial cycle. In addition, the composite delivers a discharge capacity of 703 mA h g-1 at a current density of 15 A g-1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app