Add like
Add dislike
Add to saved papers

Interface State-Induced Negative Differential Resistance Observed in Hybrid Perovskite Resistive Switching Memory.

Hybrid organic-inorganic perovskite, well-known as light-absorbing materials in solar cells, have recently attracted considerable interest for applications in resistive switching (RS) memory. A better understanding of the role of interface state in hybrid perovskite materials on RS behavior is essential for the development of practical devices. Here, we study the influence of interface state on the RS behavior of an Au/CH3 NH3 PbI3 /FTO memory device using a simple air exposure method. We observe a transition of RS hysteresis behavior with exposure time. Initially no hysteresis is apparent, but air exposure induces bipolar RS and a negative differential resistance (NDR) phenomenon. The reductions of I/Pb atomic ratio and work function on the film surface are examined using XPS spectra and Kelvin probe technique, verifying the produce of donor-type interface states (e.g., iodine vacancies) during CH3 NH3 PbI3 film degradation. Studies on complex impedance spectroscopy confirm the responsibility of interface states in NDR behavior. Eventually, the trapping/detrapping of electrons in bulk defects and at interface states accounts for the bipolar RS behavior accompanied with the NDR effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app