Add like
Add dislike
Add to saved papers

Threshold regulation and stochasticity from the MecA/ClpCP proteolytic system in Streptococcus mutans competence.

Many bacterial species use the MecA/ClpCP proteolytic system to block entry into genetic competence. In Streptococcus mutans, MecA/ClpCP degrades ComX (also called SigX), an alternative sigma factor for the comY operon and other late competence genes. Although the mechanism of MecA/ClpCP has been studied in multiple Streptococcus species, its role within noisy competence pathways is poorly understood. S. mutans competence can be triggered by two different peptides, CSP and XIP, but it is not known whether MecA/ClpCP acts similarly for both stimuli, how it affects competence heterogeneity, and how its regulation is overcome. We have studied the effect of MecA/ClpCP on the activation of comY in individual S. mutans cells. Our data show that MecA/ClpCP is active under both XIP and CSP stimulation, that it provides threshold control of comY, and that it adds noise in comY expression. Our data agree quantitatively with a model in which MecA/ClpCP prevents adventitious entry into competence by sequestering or intercepting low levels of ComX. Competence is permitted when ComX levels exceed a threshold, but cell-to-cell heterogeneity in MecA levels creates variability in that threshold. Therefore MecA/ClpCP provides a stochastic switch, located downstream of the already noisy comX, that enhances phenotypic diversity. This article is protected by copyright. All rights reserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app