Add like
Add dislike
Add to saved papers

DOCK9 induces membrane ruffles and Rac1 activity in cancer HeLa epithelial cells.

Dedicator-of-cytokinesis (DOCK) proteins are a family of guanine-nucleotide exchange factors (GEF) for Rho GTPases. The DOCK-D homology subfamily comprises DOCK9, DOCK10, and DOCK11. DOCK9 and DOCK11 are GEFs for Cdc42 and induce filopodia, while DOCK10 is a dual GEF for Cdc42 and Rac1 and induces filopodia and ruffles. We provide data showing that DOCK9, the only one of the DOCK-D members that is not considered hematopoietic, is nevertheless expressed at high levels in T lymphocytes, as do DOCK10 and DOCK11, although unlike these, it is not expressed in B lymphocytes. To investigate DOCK9 function, we have created a stable HeLa clone with inducible expression of HA-DOCK9. Induction of expression of HA-DOCK9 produced loss of elongation and polygonal shape of HeLa cells. Regarding membrane protrusions, HA-DOCK9 prominently induced filopodia, but also an increase of membrane ruffles. The latter was consistent with an increase in the levels of activation of Rac1, suggesting that DOCK9 carries a secondary ability to induce ruffles through activation of Rac1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app