Add like
Add dislike
Add to saved papers

Analysis of tail-anchored protein translocation pathway in plants.

Tail-anchored (TA) proteins are a special class of membrane proteins that carry out vital functions in all living cells. Targeting mechanisms of TA proteins are investigated as the best example for post-translational protein targeting in yeast. Of the several mechanisms, Guided Entry of Tail-anchored protein (GET) pathway plays a major role in TA protein targeting. Many in silico and in vivo analyses are geared to identify TA proteins and their targeting mechanisms in different systems including Arabidopsis thaliana . Yet, crop plants that grow in specific and/or different conditions are not investigated for the presence of TA proteins and GET pathway. This study majorly investigates GET pathway in two crop plants, Oryza sativa subsp. Indica and Solanum tuberosum , through detailed in silico analysis. 508 and 912 TA proteins are identified in Oryza sativa subsp. Indica and Solanum tuberosum respectively and their localization with respect to endoplasmic reticulum (ER), mitochondria, and chloroplast has been delineated. Similarly, the associated GET proteins are identified (Get1, Get3 and Get4) and their structural inferences are elucidated using homology modelling. Get3 models are based on yeast Get3. The cytoplasmic Get3 from O. sativa is identified to be very similar to yeast Get3 with conserved P-loop and TA binding groove. Three cytoplasmic Get3s are identified for S. tuberosum . Taken together, this is the first study to identify TA proteins and GET components in Oryza sativa subsp. Indica and Solanum tuberosum , forming the basis for any further experimental characterization of TA targeting and GET pathway mechanisms in crop plants.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app