Add like
Add dislike
Add to saved papers

Putative role of invariant water molecules in the X-ray structures of family G fungal endoxylanases.

Fungal endo-1,4-beta-xylanases (EC3.2.1.8), because of their widespread industrial applications have become one of the most researched industrial enzymes in recent times. Despite its significance, the role of conserved water molecules in the catalytic activities and structural stability of these enzymes from the fungi have not been studied to a great extent. Our computational structural bioinformatics and MD simulation studies have identified the existence of seven invariant water molecules (IW1- IW7) and reveals the stereo-chemical and electronic consequences of those conserved water molecules in G-xylanase enzyme from eight different fungi. The buried water molecules IW1 and IW2 may have decisive roles in catalysis and may also be associated with ligand binding process of the enzyme, whereas IW3, IW4, IW5, IW6 and IW7 may be involved in stabilizing the important (H144/R145) residues through H-bonds. Possibly they are also involved in the stabilization of secondary structures and anchor to maintain its stereo-chemical architecture. Moreover, a distorted 'W' shaped signature geometry that is observed at the surface of the enzyme can be used to identify the hydrophilic centers in the electron density map of other unknown members of the family G xylanases. The results from this computational investigation could be of interest to a large number of researchers working with the xylanases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app