Add like
Add dislike
Add to saved papers

A novel triple-tracer approach to assess postprandial protein turnover.

Insulin and nutrients have profound effects on proteome homeostasis. Currently no reliable methods are available to measure postprandial protein turnover. A triple-tracer method was developed using phenylalanine stable isotope tracers to estimate appearance rates of ingested (Ra meal ) and endogenous phenylalanine and the rate of phenylalanine disposal (Rd ). This was compared with the "traditional" dual-tracer method, using one (1-CM)- and two (2-CM)-compartment models. For both methods, [13 C6 ]phenylalanine was given orally, and [15 N]phenylalanine was constantly infused; the triple-tracer method added [2 H5 ]phenylalanine, infused at rates to mimic meal [13 C6 ]phenylalanine appearance. Additionally, incorporation of meal-derived phenylalanine into specific proteins was measured after purification by two-dimensional electrophoresis. The triple-tracer approach reduced modeling errors, allowing improved reconstruction of Ra meal with a tracer-to-tracee ratio that was more constant and better estimated Rd . The 2-CM better described phenylalanine kinetics and Rd than 1-CM. Thus, the triple-tracer approach using 2-CM is superior for measuring non-steady-state postprandial protein turnover. This novel approach also allows measurement of postprandial synthesis rates of specific plasma proteins. We offer a valid non-steady-state model to measure postprandial protein turnover and synthesis of plasma proteins that can safely be applied in adults, children, and pregnant women.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app