Add like
Add dislike
Add to saved papers

ns Pulsed Electric Field-Induced Action Potentials in the Circuital Model of an Axon.

Pulsed electric fields with duration in the sub- and ns time scale (nsPEFs) increase the permeability of cell membranes, enabling the transport of normally impermeant molecules into or out of the cell (electroporation). Such effect is associated to intracellular alterations and indicates nsPEFs as a new stimulus to modulate cell functions. In particular, studies dealing with the application of nsPEFs to excitable cells suggest their use for the stimulation/inhibition of cell excitation. In this paper, the circuital model per surface unit of the plasma membrane of an axon was developed to implement the Hodgkin and Huxley equations, describing the action potential activation process. For the first time, a power electronics circuital simulator was adopted. The model was first validated with conventional microsecond stimuli, and then it was employed to identify the conditions for cell excitation by nsPEFs. The results demonstrated the possibility of electrostimulation by nsPEFs at depolarization levels far below those required for inducing electroporation, and with ionic current dynamics similar to that induced by conventional stimuli, confirming recent experimental findings. Moreover, by using a power electronics tool, easier integration of the cell modeling with the design and optimization of pulse generation systems can be gained.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app