JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metal-organic framework assembled from erbium and a tetrapodal polyphosphonic acid organic linker.

A three-dimensional metal-organic framework (MOF), poly[[μ6 -5'-pentahydrogen [1,1'-biphenyl]-3,3',5,5'-tetrayltetrakis(phosphonato)]erbium(III)] 2.5-hydrate], formulated as [Er(C12 H11 O12 P4 )]·2.5H2 O or [Er(H5 btp)]·2.5H2 O (I) and isotypical with a Y3+ -based MOF reported previously by our research group [Firmino et al. (2017b). Inorg. Chem. 56, 1193-1208], was constructed based solely on Er3+ and on the polyphosphonic organic linker [1,1'-biphenyl]-3,3',5,5'-tetrakis(phosphonic acid) (H8 btp). The present work describes our efforts to introduce lanthanide cations into the flexible network, demonstrating that, on the one hand, the compound can be obtained using three distinct experimental methods, i.e. hydro(solvo)thermal (Hy), microwave-assisted (MW) and one-pot (Op), and, on the other hand, that crystallite size can be approximately fine-tuned according to the method employed. MOF I contains hexacoordinated Er3+ cations which are distributed in a zigzag inorganic chain running parallel to the [100] direction of the unit cell. The chains are, in turn, bridged by the anionic organic linker to form a three-dimensional 6,6-connected binodal network. This connectivity leads to the existence of one-dimensional channels (also running parallel to the [100] direction) filled with disordered and partially occupied water molecules of crystalization which are engaged in O-H...O hydrogen-bonding interactions with the [Er(H5 btp)] framework. Additional weak π-π interactions [intercentroid distance = 3.957 (7) Å] exist between aromatic rings, which help to maintain the structural integrity of the network.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app