Add like
Add dislike
Add to saved papers

Acetylacetonato-based pincer-type nickel(ii) complexes: synthesis and catalysis in cross-couplings of aryl chlorides with aryl Grignard reagents.

In this work, three different types of acetylacetonato-based pincer-type nickel(ii) complexes (2) were prepared. Complex 2a possessed the tridentate ONN ligand, which was constructed by the condensation reaction of acetylacetone with N,N-diethylethylenediamine. Complex 2b contained the PPh2 donor group in contrast to the NEt2 group in 2a, i.e., an ONP ligand framework. Complex 2c was composed of the NNN ligand, which was prepared by the reaction of 4-((2,4,6-trimethylphenyl)amino)pent-3-en-2-one with N,N-diethylethylenediamine. In addition to X-ray diffraction analysis, these complexes were characterized spectroscopically. Their catalytic activity for a cross-coupling reaction of aryl halides with aryl Grignard reagents was also evaluated. Among these complexes, 2b acted as an effective catalyst for the cross-coupling reaction using aryl chlorides as electrophiles. The electronic properties of these Ni(ii) complexes were investigated by cyclic voltammetry and density functional theory calculations.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app