Add like
Add dislike
Add to saved papers

Impact of dual-energy CT post-processing to differentiate venous thrombosis from iodine flux artefacts.

European Radiology 2018 December
OBJECTIVES: To investigate the accuracy of dual-energy (DE) CT-based iodine maps (IM) and noise-optimised monoenergetic extrapolations (MEI+) at 40 keV for the detection and differentiation of venous thrombosis (VT) from iodine flux artefacts (IFA) in comparison to portal-venous phase CT (CTPV ).

METHODS: Ninety-nine patients were enrolled in this study. In all patients, VT or IFA was suspected on contrast-enhanced CT and confirmed by follow-up CT or colour-coded ultrasound. All examinations were performed on a third-generation dual-source CT system in DE mode during portal-venous phase. CTPV , IM and 40-keV MEI+ were reconstructed and independently evaluated by two radiologists for the presence/absence of VT and/or IFA. Diagnostic confidence was rated on a three-point scale (3 = high confidence). Quantitative parameters were obtained by calculating contrast-to-noise ratios (CNRs), iodine content and thrombus volume. Diagnostic accuracy was assessed by calculating receiver operating characteristics (ROC) of CNR.

RESULTS: Diagnostic confidence was significantly higher for IM and MEI+ [both 3 (2-3)] compared to CTPV [2 (1-3); p ≤ 0.03]. ROC analysis revealed significantly higher AUC values and increased sensitivity for IM and MEI+ (AUC = 88%/sensitivity = 79.1% and 86%/73.1%) than for CTPV (75%/61.2%; p ≤ 0.01). Thrombus volume was significantly higher in MEI+ than in IM and CTPV (p < 0.001). CNR of thrombosis was significantly higher in IM [11.5 (8.5-14.5), p < 0.001) and MEI+ [10.9 (8.8-15.5), p < 0.001] than in CTPV [8.2 (5.8-11.4)]. Iodine quantification revealed significantly lower results in VT than in IFA [0.55 mg/ml (0.23-0.90) and 1.81 (1.60-2.12) mg/ml; p < 0.001].

CONCLUSIONS: IM and MEI+ 40 keV showed significantly higher diagnostic confidence and accuracy for the detection and differentiation of VT from IFA in comparison to CTPV .

KEY POINTS: • Iodine maps and noise-optimised monoenergetic extrapolations at 40 keV increase diagnostic confidence and accuracy for the detection and differentiation of venous thrombosis from iodine flux artefacts. • Dual-energy post-processing can significantly increase contrast-to-noise ratio and the sensitivity for the diagnosis of venous thrombosis • Iodine load in venous thrombosis is significantly lower than in iodine flux artefacts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app