Add like
Add dislike
Add to saved papers

Effects of S-Nitrosoglutathione on Electrophysiological Manifestations of Mechanoelectric Feedback.

Electromechanical coupling studies have described the intervention of nitric oxide and S-nitrosylation processes in Ca2+ release induced by stretch, with heterogeneous findings. On the other hand, ion channel function activated by stretch is influenced by nitric oxide, and concentration-dependent biphasic effects upon several cellular functions have been described. The present study uses isolated and perfused rabbit hearts to investigate the changes in mechanoelectric feedback produced by two different concentrations of the nitric oxide carrier S-nitrosoglutathione. Epicardial multielectrodes were used to record myocardial activation at baseline and during and after left ventricular free wall stretch using an intraventricular device. Three experimental series were studied: (a) control (n = 10); (b) S-nitrosoglutathione 10 µM (n = 11); and (c) S-nitrosoglutathione 50 µM (n = 11). The changes in ventricular fibrillation (VF) pattern induced by stretch were analyzed and compared. S-nitrosoglutathione 10 µM did not modify VF at baseline, but attenuated acceleration of the arrhythmia (15.6 ± 1.7 vs. 21.3 ± 3.8 Hz; p < 0.0001) and reduction of percentile 5 of the activation intervals (42 ± 3 vs. 38 ± 4 ms; p < 0.05) induced by stretch. In contrast, at baseline using the 50 µM concentration, percentile 5 was shortened (38 ± 6 vs. 52 ± 10 ms; p < 0.005) and the complexity index increased (1.77 ± 0.18 vs. 1.27 ± 0.13; p < 0.0001). The greatest complexity indices (1.84 ± 0.17; p < 0.05) were obtained during stretch in this series. S-nitrosoglutathione 10 µM attenuates the effects of mechanoelectric feedback, while at a concentration of 50 µM the drug alters the baseline VF pattern and accentuates the increase in complexity of the arrhythmia induced by myocardial stretch.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app