Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In Vitro and In Vivo Activity of a Novel Catheter Lock Solution against Bacterial and Fungal Biofilms.

Central-line-associated bloodstream infections are increasingly recognized to be associated with intraluminal microbial biofilms, and effective measures for the prevention and treatment of bloodstream infections remain lacking. This report evaluates a new commercially developed antimicrobial catheter lock solution (ACL), containing trimethoprim (5 mg/ml), ethanol (25%), and calcium EDTA (Ca-EDTA) (3%), for activity against bacterial and fungal biofilms, using in vitro and in vivo (rabbit) catheter biofilm models. Biofilms were formed by bacterial (seven different species, including vancomycin-resistant Enterococcus [VRE]) or fungal ( Candida albicans ) species on catheter materials. Biofilm formation was evaluated by quantitative culture (CFU) and scanning electron microscopy (SEM). Treatment with ACL inhibited the growth of adhesion-phase biofilms in vitro after 60 min (VRE) or 15 min (all others), while mature biofilms were completely inhibited after exposure for 2 or 4 h, compared to control. Similar results were observed for drug-resistant bacteria. Compared to the heparinized saline controls, ACL lock therapy significantly reduced the catheter bacterial (3.49 ± 0.75 versus 0.03 ± 0.06 log CFU/catheter; P = 0.016) and fungal (2.48 ± 1.60 versus 0.55 ± 1.19 log CFU/catheter segment; P = 0.013) burdens in the catheterized rabbit model. SEM also demonstrated eradication of bacterial and fungal biofilms in vivo on catheters exposed to ACL, while vigorous biofilms were observed on untreated control catheters. Our results demonstrated that ACL was efficacious against both adhesion-phase and mature biofilms formed by bacteria and fungi in vitro and in vivo .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app